=Y 4=

RTOS

Porting Guide — STM32CubelDE
STM32 Cortex M Series

Version 5.1.1
Published November 1, 2023

PX5 RTOS- STM32

Table of Contents

PX5 RTOS porting guide for STM32 Evaluation Kits - Overview ... 3
o] (T Te TR (=T o1 RS 4
Step 1: Generating the basic project using STM32CubelDEcooovvviiiiiieeieeennn, 4
Step 2: Add PX5 RTOS SOUICE COUE ... e e e e eeeees 6
Step 3: Modify the lINKEr fileooeemeeee e 7
Step 4: Modify the startup file.........oooniei e 8
Step 5: Modify the ISR il€.....ccevieeieeeeeeeeeeeeeeeeeeeeeeee e 9
Step 6: Remove the syscallsS.Cfile.........oiiiiiiiiiee e, 9
Step 7: Add a PX5 RTOS example file.......ccooveueeiiiiiieeeeeeeeeeeeceeeeeee e 10
Step 8: Modify Main.Cfile ... 10
Step 9: Modify HAL time base filecooeii i 11
Step 10: Update Project’s Paths and Symbols.............coooviiiiiiiiiiiiiieeee e, 12

www.px5rtos.com ii

PX5 RTOS - STM32

Chapter

PX5 RTOS porting guide for STM32
Evaluation Kits - Overview

PX5 RTOS samples are available for several STM32 evaluation kits, but if you need
to port it to a different one for which there is no sample, this document describes
the process to achieve that using STM32CubelDE and resources which can be
obtained from the PX5 RTOS website.

While this document shows the steps for the porting process, if you need more
details you can refer to the PX5 RTOS Binding User Guide.

of px5.c and px5 binding.s (px5.0 and px5_binding.o).
Furthermore, the evaluation is limited to a maximum of 10 threads.
Once the limit is reached, an EINVAL error code is returned from the
pthread _create API. If a full source code evaluation is required,
please contact PX5 at sales@px5rtos.com .

@ Note that this porting guide refers to pre-built object code versions

www.px5rtos.com

mailto:sales@px5rtos.com

PX5 RTOS - STM32

Chapter

Porting Steps

This chapter describes the process of porting PX5 RTOS to an STM32 Cortex M
microcontroller using the STM32CubelDE development tool.

Step 1: Generating the basic project using
STM32CubelDE

This process was created using STM32CubelDE version 1.13.2.

Create a new project: File/New/STM32 project, on board selector pick the Cortex
M evaluation board you have then click next.

For this guide, we’ll be using the STM32F769i-DISCO, but the process is similar to
other Cortex M MCUs.

Name your project and click Finish.

STM32 Project O =

Setup 5TM32 project

Project

Project Name: demu-pruject-stmﬂf?ﬁﬂ
[] Use default location

C:/Users/wdura/5TM32CubelDE/workspace_1.12.1 Browse...

Options
Targeted Language
@C OC++
Targeted Binary Type
(®) Executable () Static Library

Targeted Project Type
(@) 5TM32Cube () Empty

I/?)' < Back Mext > Cancel

www.px5rtos.com

PX5 RTOS - STM32

In order to generate a minimal version of the project, we’'ll be excluding most of
peripherals. To do so, under the Pinout and Configuration tab:

System Core: Disable IWDG and WWDG
Analog: Disable all ADCs

Timers: Disable all

Connectivity: Disable all

Multimedia: Disable all

Security: Disable RNG

Computing: Disable CRC

Middleware and SW Packs: Disable FreeRTOS

Save your configuration: CTRL+S. STM32CubelDE will prompt if you want to
generate code, hit Yes.

On project explorer you should find the basic project structure as follows:

D00

5 Project Explorer 2 =

i

v demo-project-stm32f769
il Includes
w 2 Core
= Inc
v = 5rc
g main.c
|| stm32f7xx_hal_msp.c
|| stm32f7xx_hal_timebase_tim.c
L] stm32fTax_it.c
L] syscalls.c
lL.c] sysmem.c
L] systern_stm32fTex.c
[= Startup
2 Drivers
demo-project-stm32fTE9.ioc
i STMI2ZF7ESNIHEX_FLASH.I
i S TM32ZF7EONIHX_RAM.I

www.px5rtos.com

PX5 RTOS - STM32

www.px5rtos.com

Step 2: Add PX5 RTOS source code

For this step you’ll need to have access to PX5 RTOS files, which you can obtain
from any sample on the PX5 RTOS website with a compatible architecture (like
Cortex M7 sample if you’re using a Cortex M7 MCU).

Drag and drop the PX5 RTOS source folder under your project’s root directory to
copy all files and directories. Your project should now look like the following:

&

§5 Project Explorer < -

oLl

v demo-project-stm 32760
[t} Includes
w 2 Core

= Inc
= Src

[= Startup
2 Drivers

W = sOouUrce
[= bits
= sys
[l fentlh
[l mgueueh
[5 pthread.h
(5 px3_binding.h
|ﬂ. px3_binding.o
[l px3_errnc.h
(5 px3_timeh
[l px3_user_config.h
lml px5.h
@. px 3.0
l5| sched.h
[l semaphoreh
If| signal.h
[l unistd.h
demo-project-stm32f76%.i0c
o STM3ZFTESMIHE_FLASH.I
w STM3ZFTESMIHY_RAM.Id

PX5 RTOS - STM32

www.px5rtos.com

Step 3: Modify the linker file

Two changes are needed in order to provide memory for PX5 RTOS process. Open
the linker file under your project root directory, in this case the
STM32F769NIHX_FLASH.Id file.

Add the following line under the existing min_stack_size definition, which is
normally on line 42.

_Min Proc Stack Size = 0x400; /* required amount of PX5
RTOS process stack */

This part of the linker file should look like the following after the modification:

38 /* Highest address of the user mode stack */

39 _estack = ORIGIN(RAM) + LENGTH(RAM); /* end of "RAM" Ram type memory */

41 _Min_Heap Size = 8x288; /* required amount of heap */

42 Min_Stack Size = @x488; /* required amount of stack */

43 _Min_Proc_Stack_5ize = 8x488; /* required amount of PX5 RTOS5 process stack */

Still on the linker file, replace the user_heap_stack content with the below:

. _user heap stack
{
= ALIGN(8);
PROVIDE (end = .);
PROVIDE (end = .);
= . + Min Heap Size;

_Proc Stack Base = .;
= . + Min Proc Stack Size;
_Proc Stack Limit = .;

= . + Min Stack Size;
= ALIGN(8);
} >RAM

This part of the linker file should look like the following after the modification:

166 /* User_heap_stack section, used to check that there is enough "RAM" Ram type memory left */
167= ._user_heap_stack :

{

. = ALTGN(8);

PROVIDE { end = .);
PROVIDE { _end = .);

. = . + _Min_Heap_Size;
_Proc_stack Base = .;

. = . + _Min_Proc_Stack_Size;
_Proc_stack Limit = .;

. = . + _Min_Stack_Size;
17 . = ALIGN(8);

178} >RAM

PX5 RTOS - STM32

www.px5rtos.com

Step 4: Modify the startup file

The start-up file requires a modification so the application will use the process
stack. Open the startup file under core/startup/startup_stm32F769nihx.s file.

Find the Reset_Handler and add the following after the set stack pointer
instruction.

/* PX5 RTOS, switch to use PSP and set the stack top

to it.

1dr

msr

mov

msr

mov

*/
r0, = Proc Stack Limit
psp, r0
rl, #2
control, rl

sp, r0

This part of the startup file should look like the following after the modification:

.section .text.Reset Handler

.weak Reset Handler
.type Reset Handler, %functien

60 Reset_Handler:
ol 1dr sp, = estack /* set stack pointer */

R Y = ¥

¥ PX5 RTOS, switch to use PSP and set the stack top to 1t.
ldr r0, = Proc Stack Limit
msr psp, r0

mov rl, #2
msr control, rl
mov sp, r0

PX5 RTOS - STM32

www.px5rtos.com

Step 5: Modify the ISR file

Some changes are needed in order to provide a single, periodic timer interrupt to
drive all of PX5 RTOS time related services. Open the ISR file under
core/src/stm32f7xx_it.c file.

Add the following function declaration before the SysTick_Handler function:
volid px5 timer interrupt process(void);

Add the following function call within the SysTick_Handler function:

px5 timer interrupt process();

This part of the ISR file should look like the following after the modification:

]

vold px5_timer_interrupt_process(void);

[]
B R

[t e Y R O O O - R - O v

* @brief This function handles System tick timer.

185 /

186= void SysTick_Handler(wvoid)

187 {

188 * USER CODE BEGIN SysTick IRQn @ */

139 px5_timer interrupt_process();

154 '* USER CODE END SysTick IRQn & */

192 f* USER CODE BEGIN SysTick g_IRQn 1 */
193

194 /* USER CODE END SysTick IRQn 1 */

195 1}

Still on this file, comment out or remove these two functions to avoid duplicate
declaration:

e void PendSV handler (void)
e void SVC Handler (void)

Step 6: Remove the syscalls.c file

Find the syscalls.c file under core/src and remove it from the project. Right click on
the file and select delete. Confirm the action.

PX5 RTOS - STM32

www.px5rtos.com

Step 7: Add a PX5 RTOS example file

For this step you’ll need to have access to PX5 RTOS files, which you can obtain
from any sample on the PX5 RTOS website with a compatible architecture (like
Cortex M7 sample if you're using a Cortex M7 MCU).

Using the PX5 RTOS example folder, drag and drop the pthread_create_example.c
under core/src and confirm the copy of this file.

Your project directory should now look like the following:

W dermo-project-stm32f 769
[Includes
w 2 Core
= Inc
W = 5rc
L] main.c
l.¢| pthread_create_example.c
] stm32fTxx_hal_msp.c
L] strm32fTxx_hal_timebase_tim.c
L] stm32fTex_it.c
lg| sysmem.c
l.¢] system_stm32fTux.c

Step 8: Modify main.c file

Since the example file already contains a main function, we need to rename the
existing one. Open the file under core/src/main.c

Rename the main function call from int main(void) to void platform_setup(void)

Then, remove the while loop from the same function.

10

PX5 RTOS - STM32

www.px5rtos.com

Step 9: Modify HAL time base file

Regarding the timer interrupt period, most applications use a 1ms interrupt
interval. However, the application can use any timer interrupt frequency, providing
that the PX5 RTOS is built with the correct value of PX5_TICKS PER_SECOND
(default is 1,000 which represents a 1ms timer interrupt interval).

Open the HAL time base file under core/src/stm32f7xx_hal_timebase_tim.c and
add the following code under the HAL InitTick function.

/* Configure the SysTick to have interrupt in 1ms
time basis */

HAL SYSTICK Config(SystemCoreClock/1000);

/* Configure the SysTick IRQ priority */

HAL NVIC SetPriority(SysTick IRQn, TickPriority, 0);

This part of the HAL time base file should look like this after the modification:

41= HAL StatusTypeDef HAL InitTick(uint32 t TickPriority)

42 {

43 RCC_ClkInitTypeDef clkconfig;

44 uint32_t uwTimclock, uwAPBlPrescaler = 8U;
45

46 uint32_t uwPrescalerValue = 8U;

47 uint32_t pFLatency;

48 HAL_StatusTypeDef status;

49

58 /* Configure the SysTick to have interrupt in Ims time basis */
51 HAL S¥STICK Config(SystemCoreClock/18ea);

52

53 /* Configure the SysTick IRQ priority */

54 HAL_NVIC_SetPriority(SysTick IRQn, TickPriority, @);

55

56 /* Enable TIM& clock */

57 HAL_RCC_TIM&_CLK_ENABLE();

11

PX5 RTOS - STM32

www.px5rtos.com

Step 10: Update Project’s Paths and Symbols

The last step is to update the project’s paths and symbols to add the PX5 RTOS
source folder. To do so, right click project name, select properties.

Then, select Paths and Symbols under C/C++ General. Select the Source Location
tab, click on the button Add Folder, select source and hit ok.

Properties for demo-project-stm32f762 [} X
Paths and Symbols LRCAS

Resource

Builders

C/Crr Build Configuration: |Debug [Active] ~ | Manage Configurations...

w C/C++ General
Code Analysis

Documentation (= Includes # Symbols =i Libraries (® Library Paths (2 Sourcelocation [References

File Types

Formatter Source folders on build path: FRad Fatders]
Indexer (= /demo-project-stm32f769/ Core

Language Mappings (= /demo-project-stm32769/ Drivers

Paths and Symbols (= /demo-project-stm32f76%/source

Preprocessor Include Pat
CMSIS-5VD Settings
Project References
Run/Debug Settings

Restore Defaults Apply

@. Apply and Close Cancel

Still on this window, select the Includes tab, click on the add button, type source
and hit ok, then apply.

Properties for demo-project-stm32f769 o x
Paths and Symhols Gro-
Resource
Builders
C/Ce+ Build Configuration: |Debug [Active] | | Manage Configurations...
v C/Cr+ General
Code Analysis
Documentation (=) Includles # Symbols =i Libraries (R Library Paths (2 Source Location [References
File Types
Formatter Languages Include directories Add..
Indexer GNUC B Carefinc i
Language Mappings Assembly 42 Drivers/STM32F7xx_HAL_Driver/Inc
E“h”"d SyTlesn . 4= Drivers/STM32F7xx_HAL Driver/Inc/Legacy Delete
reprocessor Include Pat 42 Drivers/CMSIS/Device/ST/STM32FTxx/Include
CMSIS-SVD Settings e Export
: {2 Drivers/CMSIS/Include
Project References o
Run/Debug Settings 4= source =
ove Up
Move Down

Using relative paths is ambiguous and not ..ommended. It can cause unexpected effects,
[Show built-in values

¥ Import Settings.. | 5% Export Settings...

. N Restore Defaults Apply

[€))] Apply and Close Cancel

In this last step, we need to add the two object files from PX5 RTOS to the linker
options: open the Settings tab under C/C++ Build.

12

PX5 RTOS - STM32

Then, select the Tools Settings tab, expand MCU GCC Linker, and click on

Miscellaneous.

The bottom screen displays “additional object files”, click in the add path file icon

(the one with a green plus sign), select Workspace, find the source directory and
then select both files:

e px5.0

e px5 binding.o

E Properties for demo-project-stmf769

‘ type filter text

Resource
Builders
w C/C++ Build

Build Variables
Environment
Legging
Settings

C/C++ General

CMSIS-5VD Settings

Project References

Run/Debug Settings

Settings

Configuration: |Debug [Active]

i Tool Settings & Build Steps

& MCU Toolchain
(£ MCU Settings

2 General

(2 Debugging
(2 Preprocessor
(2 Include paths
@ Miscellanecus

2 General

(2 Debugging
(2 Preprocessor
2 Include paths
(2 Optimization
@ Warnings

@ Miscellanecus
v % MCU GCC Linker
2 General

(22 Libraries

(8 Miscellaneous

Manage Configurations...

Build Artifact Binary Parsers @ Error Parsers

@ MCU Post build cutputs
v B MCU GCC Assembler

~ B3 MCU GCC Compiler

Other flags &

Additional object files & e 8 &
i -/ a8 i
"${workspace_loc/S{ProjName}/source/px5.0

Click Apply then Apply and Close. Your project is ready to be built and tested on

your target device.

www.px5rtos.com

13

Enhance - Simplify - Unite

11440 West Bernardo Court « Suite 300
San Diego, CA 92127, USA

Phone: +1 (858) 753-1715
Website: px5rtos.com

© PX5 « All Rights Reserved

	PX5 RTOS porting guide for STM32 Evaluation Kits - Overview
	Porting Steps
	Step 1: Generating the basic project using STM32CubeIDE
	Step 2: Add PX5 RTOS source code
	Step 3: Modify the linker file
	Step 4: Modify the startup file
	Step 5: Modify the ISR file
	Step 6: Remove the syscalls.c file
	Step 7: Add a PX5 RTOS example file
	Step 8: Modify main.c file
	Step 9: Modify HAL time base file
	Step 10: Update Project’s Paths and Symbols

