
Porting Guide – STM32CubeIDE
STM32 Cortex M Series

 Version 5.1.1
 Published November 1, 2023

P X 5 R T O S - S T M 3 2

www.px5rtos.com ii

Table of Contents
PX5 RTOS porting guide for STM32 Evaluation Kits - Overview .. 3
Porting Steps .. 4

Step 1: Generating the basic project using STM32CubeIDE 4
Step 2: Add PX5 RTOS source code ... 6
Step 3: Modify the linker file ... 7
Step 4: Modify the startup file ... 8
Step 5: Modify the ISR file .. 9
Step 6: Remove the syscalls.c file .. 9
Step 7: Add a PX5 RTOS example file ... 10
Step 8: Modify main.c file ... 10
Step 9: Modify HAL time base file .. 11
Step 10: Update Project’s Paths and Symbols ... 12

PX5 RTOS – STM32

www.px5rtos.com 3

PX5 RTOS porting guide for STM32
Evaluation Kits - Overview
PX5 RTOS samples are available for several STM32 evaluation kits, but if you need
to port it to a different one for which there is no sample, this document describes
the process to achieve that using STM32CubeIDE and resources which can be
obtained from the PX5 RTOS website.

While this document shows the steps for the porting process, if you need more
details you can refer to the PX5 RTOS Binding User Guide.

 Note that this porting guide refers to pre-built object code versions
of px5.c and px5_binding.s (px5.o and px5_binding.o).
Furthermore, the evaluation is limited to a maximum of 10 threads.
Once the limit is reached, an EINVAL error code is returned from the
pthread_create API. If a full source code evaluation is required,
please contact PX5 at sales@px5rtos.com .

Chapter

1

mailto:sales@px5rtos.com

PX5 RTOS – STM32

www.px5rtos.com 4

Porting Steps
This chapter describes the process of porting PX5 RTOS to an STM32 Cortex M
microcontroller using the STM32CubeIDE development tool.

Step 1: Generating the basic project using
STM32CubeIDE
This process was created using STM32CubeIDE version 1.13.2.

Create a new project: File/New/STM32 project, on board selector pick the Cortex
M evaluation board you have then click next.

For this guide, we’ll be using the STM32F769i-DISCO, but the process is similar to
other Cortex M MCUs.

Name your project and click Finish.

Chapter

2

PX5 RTOS – STM32

www.px5rtos.com 5

In order to generate a minimal version of the project, we’ll be excluding most of
peripherals. To do so, under the Pinout and Configuration tab:

System Core: Disable IWDG and WWDG

Analog: Disable all ADCs

Timers: Disable all

Connectivity: Disable all

Multimedia: Disable all

Security: Disable RNG

Computing: Disable CRC

Middleware and SW Packs: Disable FreeRTOS

Save your configuration: CTRL+S. STM32CubeIDE will prompt if you want to
generate code, hit Yes.

On project explorer you should find the basic project structure as follows:

PX5 RTOS – STM32

www.px5rtos.com 6

Step 2: Add PX5 RTOS source code
For this step you’ll need to have access to PX5 RTOS files, which you can obtain
from any sample on the PX5 RTOS website with a compatible architecture (like
Cortex M7 sample if you’re using a Cortex M7 MCU).

Drag and drop the PX5 RTOS source folder under your project’s root directory to
copy all files and directories. Your project should now look like the following:

PX5 RTOS – STM32

www.px5rtos.com 7

Step 3: Modify the linker file
Two changes are needed in order to provide memory for PX5 RTOS process. Open
the linker file under your project root directory, in this case the
STM32F769NIHX_FLASH.ld file.

Add the following line under the existing min_stack_size definition, which is
normally on line 42.

_Min_Proc_Stack_Size = 0x400; /* required amount of PX5
RTOS process stack */

This part of the linker file should look like the following after the modification:

Still on the linker file, replace the user_heap_stack content with the below:

 ._user_heap_stack :
 {

. = ALIGN(8);
PROVIDE (end = .);
PROVIDE (_end = .);
. = . + _Min_Heap_Size;
_Proc_Stack_Base = .;
. = . + _Min_Proc_Stack_Size;
_Proc_Stack_Limit = .;
. = . + _Min_Stack_Size;
. = ALIGN(8);

 } >RAM

This part of the linker file should look like the following after the modification:

PX5 RTOS – STM32

www.px5rtos.com 8

Step 4: Modify the startup file
The start-up file requires a modification so the application will use the process
stack. Open the startup file under core/startup/startup_stm32F769nihx.s file.

Find the Reset_Handler and add the following after the set stack pointer
instruction.

 /* PX5 RTOS, switch to use PSP and set the stack top
to it. */

 ldr r0, =_Proc_Stack_Limit

 msr psp, r0

 mov r1, #2

 msr control, r1

 mov sp, r0

This part of the startup file should look like the following after the modification:

PX5 RTOS – STM32

www.px5rtos.com 9

Step 5: Modify the ISR file
Some changes are needed in order to provide a single, periodic timer interrupt to
drive all of PX5 RTOS time related services. Open the ISR file under
core/src/stm32f7xx_it.c file.

Add the following function declaration before the SysTick_Handler function:

void px5_timer_interrupt_process(void);

Add the following function call within the SysTick_Handler function:

px5_timer_interrupt_process();

This part of the ISR file should look like the following after the modification:

Still on this file, comment out or remove these two functions to avoid duplicate
declaration:

• void PendSV_handler(void)
• void SVC_Handler(void)

Step 6: Remove the syscalls.c file
Find the syscalls.c file under core/src and remove it from the project. Right click on
the file and select delete. Confirm the action.

PX5 RTOS – STM32

www.px5rtos.com 10

Step 7: Add a PX5 RTOS example file
For this step you’ll need to have access to PX5 RTOS files, which you can obtain
from any sample on the PX5 RTOS website with a compatible architecture (like
Cortex M7 sample if you’re using a Cortex M7 MCU).

Using the PX5 RTOS example folder, drag and drop the pthread_create_example.c
under core/src and confirm the copy of this file.

Your project directory should now look like the following:

Step 8: Modify main.c file
Since the example file already contains a main function, we need to rename the
existing one. Open the file under core/src/main.c

Rename the main function call from int main(void) to void platform_setup(void)

Then, remove the while loop from the same function.

PX5 RTOS – STM32

www.px5rtos.com 11

Step 9: Modify HAL time base file
Regarding the timer interrupt period, most applications use a 1ms interrupt
interval. However, the application can use any timer interrupt frequency, providing
that the PX5 RTOS is built with the correct value of PX5_TICKS_PER_SECOND
(default is 1,000 which represents a 1ms timer interrupt interval).

Open the HAL time base file under core/src/stm32f7xx_hal_timebase_tim.c and
add the following code under the HAL_InitTick function.

 /* Configure the SysTick to have interrupt in 1ms
time basis */

 HAL_SYSTICK_Config(SystemCoreClock/1000);

 /* Configure the SysTick IRQ priority */

 HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0);

This part of the HAL time base file should look like this after the modification:

PX5 RTOS – STM32

www.px5rtos.com 12

Step 10: Update Project’s Paths and Symbols
The last step is to update the project’s paths and symbols to add the PX5 RTOS
source folder. To do so, right click project name, select properties.

Then, select Paths and Symbols under C/C++ General. Select the Source Location
tab, click on the button Add Folder, select source and hit ok.

Still on this window, select the Includes tab, click on the add button, type source
and hit ok, then apply.

In this last step, we need to add the two object files from PX5 RTOS to the linker
options: open the Settings tab under C/C++ Build.

PX5 RTOS – STM32

www.px5rtos.com 13

Then, select the Tools Settings tab, expand MCU GCC Linker, and click on
Miscellaneous.

The bottom screen displays “additional object files”, click in the add path file icon
(the one with a green plus sign), select Workspace, find the source directory and
then select both files:

• px5.o

• px5_binding.o

Click Apply then Apply and Close. Your project is ready to be built and tested on
your target device.

PX5 RTOS – STM32

www.px5rtos.com 14

	PX5 RTOS porting guide for STM32 Evaluation Kits - Overview
	Porting Steps
	Step 1: Generating the basic project using STM32CubeIDE
	Step 2: Add PX5 RTOS source code
	Step 3: Modify the linker file
	Step 4: Modify the startup file
	Step 5: Modify the ISR file
	Step 6: Remove the syscalls.c file
	Step 7: Add a PX5 RTOS example file
	Step 8: Modify main.c file
	Step 9: Modify HAL time base file
	Step 10: Update Project’s Paths and Symbols

