
Porting Guide – IAR
STM32 Cortex M Series

 Version 5.1.0
 Published November 15, 2023

P X 5 R T O S - N U C L E O - C 0 3 1 C 6 / I A R

www.px5rtos.com ii

Table of Contents
PX5 RTOS - IAR - porting guide for STM32 Evaluation Kits - Overview 3
Porting Steps .. 4

Step 1: Get a basic IAR working sample from STMicro GitHub page 4
Step 2: Add PX5 RTOS source code ... 5
Step 3: Modify startup file ... 6
Step 4: Modify linker file ... 7
Step 5: Modify main.c file ... 8
Step 6: Modify the ISR file .. 8
Step 7: Add header files to your IAR project .. 9

PX5 RTOS – NUCLEO-C031C6/ I AR

www.px5rtos.com 3

PX5 RTOS - IAR - porting guide for STM32
Evaluation Kits - Overview
PX5 RTOS samples are available for several STM32 evaluation kits, but if you need
to port it to a different one for which there is no sample, this document describes
the process to achieve that using IAR EWARM and resources which can be
obtained directly from the PX5 RTOS website and GitHub.

While this document shows the steps for the porting process, if you need more
details you can refer to the PX5 RTOS Binding User Guide.

Note that this porting guide refers to pre-built object code versions
of px5.c and px5_binding.s (px5.o and px5_binding.o).
Furthermore, the evaluation is limited to a maximum of 10 threads.
Once the limit is reached, an EINVAL error code is returned from the
pthread_create API. If a full source code evaluation is required,
please contact PX5 at sales@px5rtos.com.

Chapter

1

PX5 RTOS – NUCLEO-C031C6/ I AR

www.px5rtos.com 4

Porting Steps
This chapter describes the process of porting PX5 RTOS to an STM32 Cortex M
microcontroller using the IAR EWARM development tool.

An official sample published by STMicro on their website will be the base for the
porting exercise. Although you can also start by leveraging STM32CubeIDE, this
approach will require several additional steps modifying files to work with IAR.

Step 1: Get a basic IAR working sample from STMicro
GitHub page
For this guide, we’ll be using the STM32C031C6 NUCLEO, but the process is similar
to other Cortex M MCUs.

Visit STMicro GitHub page and clone this repository or download the files following
instructions found here:

https://github.com/STMicroelectronics/STM32CubeC0/tree/main#how-to-use

It is crucial to follow the steps required, specifically the one related to submodules
needed for this project.

After obtaining the files, open the IAR project (project.eww) file from the path:

Projects/NUCLEO-C031C6/Examples/CORTEX/CORTEXM_SysTick/EWARM.

Chapter

2

https://github.com/STMicroelectronics/STM32CubeC0/tree/main#how-to-use

PX5 RTOS – NUCLEO-C031C6/ I AR

www.px5rtos.com 5

Step 2: Add PX5 RTOS source code
For this step you’ll need to have access to PX5 RTOS files, which you can obtain
from any sample on the PX5 RTOS website with a compatible architecture (like
Cortex M0 sample if you’re using a Cortex M0 MCU).

Add a group named PX5_RTOS to your project and then add files. Select both
px5.o and px5_bindings.o files.

Add a sample file to the project, under Application. In this guide we’ll refer to the
basic sample, but feel free to use any other sample you prefer. Select the
basic_example.c file.

Your project should now look like the following:

PX5 RTOS – NUCLEO-C031C6/ I AR

www.px5rtos.com 6

Step 3: Modify startup file
The start-up file requires a modification so the application will use the process
stack. Open the startup file under Application/EWARM/startup_stm32c031xx.s

Find the definition for EXTERN __iar_program_start, which is likely on line 48, and
add the following before it:

EXTERN PROC_STACK$$Limit

This part of the startup file will look like this after the change:

Still on this file, find the Reset_handler and add the following to it:

 /* PX5 RTOS, switch to use PSP and set the stack top
to it. */

 LDR R0, =PROC_STACK$$Limit

 MSR PSP, R0

 MOVS R1, #2

 MSR CONTROL, R1

 MOV SP, R0

After the change this section of the file should look like the following:

PX5 RTOS – NUCLEO-C031C6/ I AR

www.px5rtos.com 7

Step 4: Modify linker file
The linker file requires modifications so the application will use the process stack.
First, we need to add it to the project - stm32c031xx_flash.icf, which is in the root
of the sample folder. Then open it.

Find the define symbol __ICFEDIT_size_cstack__ = 0x400; which is likely on line 13,
and add the following right after it:

define symbol __ICFEDIT_size_proc_stack__ = 0x400;

Then, add the following right after the define block CSTACK:

define block PROC_STACK with alignment = 8, size =
__ICFEDIT_size_proc_stack__ { };

Finally, modify the place in RAM_region, with the following:

place in RAM_region { readwrite,

 block CSTACK, block PROC_STACK, block HEAP };

After the change this section of the file should look like the following:

PX5 RTOS – NUCLEO-C031C6/ I AR

www.px5rtos.com 8

Step 5: Modify main.c file
Since the example file already contains a main function, we need to rename the
existing one. Open the main.c file under Application.

Rename the main function call from int main(void) to void platform_setup(void)

Then, remove the while loop from the same function.

Step 6: Modify the ISR file
Some changes are required in order to provide a single, periodic timer interrupt to
drive all of PX5 RTOS time related services. Open the ISR file stm32c0xx_it.c under
Application.

Look for the SysTick_Handler function and add the following function call:

px5_timer_interrupt_process();

Add the function declaration before the SysTick_Handler function:

void px5_timer_interrupt_process(void);

This part of the ISR file should look like the following after the modification:

Still on this file, comment out or remove these two functions to avoid duplicate
declaration:

• void PendSV_handler(void)
• void SVC_Handler(void)

PX5 RTOS – NUCLEO-C031C6/ I AR

www.px5rtos.com 9

Step 7: Add header files to your IAR project
Right click the project name and select options.

Under C/C++ Compiler / Preprocessor / Additional include directories add the
following directories:

1. [PX5_RTOS-Sample-Folder]\source

After header files, update Defined Symbols with the information below:

PX5_EVALUATION

Attention: You might also need to change the option for compiler optimization
which might remove variables like the thread_counter from your sample. To do so,
right click the project name, select C/C++ Compiler, then Optimizations and click
None under Level.

Your project is ready to be built and tested on your target device.

PX5 RTOS – NUCLEO-C031C6/ I AR

www.px5rtos.com 10

	PX5 RTOS - IAR - porting guide for STM32 Evaluation Kits - Overview
	Porting Steps
	Step 1: Get a basic IAR working sample from STMicro GitHub page
	Step 2: Add PX5 RTOS source code
	Step 3: Modify startup file
	Step 4: Modify linker file
	Step 5: Modify main.c file
	Step 6: Modify the ISR file
	Step 7: Add header files to your IAR project

