=Y 4=

RTOS

Porting Guide — IAR
STM32 Cortex M Series

Version 5.1.0
Published November 15, 2023

PX5 RTOS- NUCLEO-C031C6/1AR

Table of Contents

PX5 RTOS - IAR - porting guide for STM32 Evaluation Kits - Overview
o] (T Te TR (=T o1 RS
Step 1: Get a basic IAR working sample from STMicro GitHub page
Step 2: Add PX5 RTOS source code
Step 3: Modify startup file
Step 4: Modify INKEE fil© ... e e e e e eaeens
Step 5: Modify Main.C file ..o
Step 6: Modify the ISR il€......ccooo e e e
Step 7: Add header files to your IAR project

www.px5rtos.com ii

PX5 RTOS - NUCLEO-C031C6/IAR

www.px5rtos.com

Chapter

PX5 RTOS - IAR - porting guide for STM32
Evaluation Kits - Overview

PX5 RTOS samples are available for several STM32 evaluation kits, but if you need
to port it to a different one for which there is no sample, this document describes
the process to achieve that using IAR EWARM and resources which can be
obtained directly from the PX5 RTOS website and GitHub.

While this document shows the steps for the porting process, if you need more
details you can refer to the PX5 RTOS Binding User Guide.

of px5.c and px5_binding.s (px5.0 and px5_binding.o).
Furthermore, the evaluation is limited to a maximum of 10 threads.
Once the limit is reached, an EINVAL error code is returned from the
pthread _create API. If a full source code evaluation is required,
please contact PX5 at sales@px5rtos.com.

@ Note that this porting guide refers to pre-built object code versions

PX5 RTOS - NUCLEO-C031C6/IAR

www.px5rtos.com

Chapter

Porting Steps

This chapter describes the process of porting PX5 RTOS to an STM32 Cortex M
microcontroller using the IAR EWARM development tool.

An official sample published by STMicro on their website will be the base for the
porting exercise. Although you can also start by leveraging STM32CubelDE, this
approach will require several additional steps modifying files to work with IAR.

Step 1: Get a basic IAR working sample from STMicro
GitHub page

For this guide, we’ll be using the STM32C031C6 NUCLEO, but the process is similar
to other Cortex M MCUs.

Visit STMicro GitHub page and clone this repository or download the files following
instructions found here:

https://github.com/STMicroelectronics/STM32CubeC0/tree/main#thow-to-use

It is crucial to follow the steps required, specifically the one related to submodules
needed for this project.

After obtaining the files, open the IAR project (project.eww) file from the path:

Projects/NUCLEO-C031C6/Examples/CORTEX/CORTEXM_SysTick/EWARM.

https://github.com/STMicroelectronics/STM32CubeC0/tree/main#how-to-use

PX5 RTOS - NUCLEO-C031C6/IAR

Step 2: Add PX5 RTOS source code

For this step you’ll need to have access to PX5 RTOS files, which you can obtain
from any sample on the PX5 RTOS website with a compatible architecture (like
Cortex MO sample if you’re using a Cortex MO MCU).

Add a group named PX5_RTOS to your project and then add files. Select both
px5.0 and px5_bindings.o files.

Add a sample file to the project, under Application. In this guide we’ll refer to the
basic sample, but feel free to use any other sample you prefer. Select the
basic_example.c file.

Your project should now look like the following:

Files =
w

E @ CORTEXM_SysTick - CORTEXM_SysTi..

=1 Wl Application

B B AR

=1 W User
main.c
stm32clo_hal_msp.c
stm32clo_itc

— [basic_example.c

—=1 B Doc
L— (I README.md

1 Bl Drivers

B ESF

B CHMEIS

B STM3I2COxe_ HAL Driver

L O @ Fxs RTOS

— [px5.o

— [pxE_hinding.o

www.px5rtos.com

PX5 RTOS - NUCLEO-C031C6/IAR

Step 3: Modify startup file

The start-up file requires a modification so the application will use the process
stack. Open the startup file under Application/EWARM/startup_stm32c031xx.s

Find the definition for EXTERN __iar_program_start, which is likely on line 48, and
add the following before it:

EXTERN PROC STACKS$SLimit

This part of the startup file will look like this after the change:

41
42
43
a4
45
46
47
48
49
s@
51
52
53

MODULE ?cstartup

;; Forward declaration of sections.
SECTION CSTACK:DATA:NOROOT(3)

SECTION .intwec:CODE:NOROOT(2)
EXTERN PROC_STACK$SLimit
EXTERN _ iar program_start

EXTERN SystemInit
PUBLIC _ wvector_table

Still on this file, find the Reset_handler and add the following to it:

/* PX5 RTOS, switch to use PSP and set the stack top

to it. */
LDR RO, =PROC STACKS$SLimit
MSR PSP, RO
MOVS R1, #2
MSR CONTROL, R1
MOV SP, RO

After the change this section of the file should look like the following:

116
117
118
119
128
121
122

www.px5rtos.com

Reset_Handler
A% PX5 RTOS, switch to use PSP and set the stack top to it. */

LDR Re, =PROC_STACKSILimit
MSR PSP, R@

MOV'S R1, #2

MSR CONTROL, R1

MOV SP, R@

PX5 RTOS - NUCLEO-C031C6/IAR

Step 4: Modify linker file

The linker file requires modifications so the application will use the process stack.
First, we need to add it to the project - stm32c031xx_flash.icf, which is in the root
of the sample folder. Then open it.

Find the define symbol __ICFEDIT _size_cstack__ = 0x400; which is likely on line 13,
and add the following right after it:

define symbol ICFEDIT size proc stack = 0x400;
Then, add the following right after the define block CSTACK:

define block PROC STACK with alignment = 8, size =
___ICFEDIT size proc stack { };

Finally, modify the place in RAM_region, with the following:
place in RAM region { readwrite,
block CSTACK, block PROC STACK, block HEAP };

After the change this section of the file should look like the following:

define symbol _ ICFEDIT_size_cstack__ = ©x406;
define symbol _ ICFEDIT_size_proc_stack__ = 6x400;
define symbol _ ICFEDIT_size_heap__ = ©x208;

define memory mem size = 4G;
define region ROM_region = mem:[__ ICFEDIT_region_ROM_start__ __ICFEDIT_region_ROM_end_];
define region RAM_region = mem:[__ ICFEDIT_region_RAM_start__ _ ICFEDIT_region_RAM end_];
define block CSTACK alignment = 8, size = _ ICFEDIT_size_cstack__ { };

define block PROC_STACK alignment = 8, size = _ ICFEDIT_size_proc_stack__ { };

define block HEAP alignment = 8, size = _ ICFEDIT size_heap {1}

initialize { };
do not initialize { section .noinit };

place address mem:__ ICFEDIT_intvec_start__ { section .intvec };

place ROM_region { };
place RAM region {

block CSTACK, block PROC_STACK, block HEAP };

www.px5rtos.com

PX5 RTOS - NUCLEO-C031C6/IAR

Step 5: Modify main.c file

Since the example file already contains a main function, we need to rename the
existing one. Open the main.c file under Application.

Rename the main function call from int main(void) to void platform_setup(void)

Then, remove the while loop from the same function.

Step 6: Modify the ISR file

Some changes are required in order to provide a single, periodic timer interrupt to
drive all of PX5 RTOS time related services. Open the ISR file stm32c0xx_it.c under
Application.

Look for the SysTick _Handler function and add the following function call:
px5 timer interrupt process();

Add the function declaration before the SysTick_Handler function:

void px5 timer interrupt process(void);

This part of the ISR file should look like the following after the modification:

lad4
185
186 wvoid px5_timer_interrupt_process(wvoid);
167

las SEE
189 * @brief This function handles System tick timer.

1le *

111 woid SysTick_Handler(void)

1124 {

113 A% USER CODE BEGIN SysTick_IRQn @ */
114

115 px5_timer_interrupt_process();

116

117 A% USER CODE END SysTick IRQm @ */
118 HaL_TIncTick();

119 A% USER CODE BEGIN SysTick IRQm 1 */
12@

121 J* USER CODE END SysTick IRQm 1 */
122 L}

Still on this file, comment out or remove these two functions to avoid duplicate
declaration:

e void PendSV handler (void)
e void SVC Handler (void)

www.px5rtos.com

PX5 RTOS - NUCLEO-C031C6/IAR

Step 7: Add header files to your IAR project

Right click the project name and select options.

Under C/C++ Compiler / Preprocessor / Additional include directories add the
following directories:

1. [PX5_RTOS-Sample-Folder]\source
After header files, update Defined Symbols with the information below:
PX5 EVALUATION

Attention: You might also need to change the option for compiler optimization
which might remove variables like the thread_counter from your sample. To do so,
right click the project name, select C/C++ Compiler, then Optimizations and click
None under Level.

Options for node "CORTEXM_SysTick" X

Your project is ready to be built and tested on your target device.

www.px5rtos.com

Category

General Options
Static Analysis
Runtime Checking
Assembler
Qutput Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
CADI
CMSIS DAP
GDB Server
I-et
Jink/3-Trace
TI Stellaris
Nu-Link.
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TIXD5

Factory Settings
[Multifile Compilation

Dizcard Unused Publics

Encodings
Cptimizations

Diagnostics
Language 2 Code

List Preprocessor Extra Options

Cutput

Language 1

Level Enabled transformations:

() High

Size

Mo size constraints

Cancel

Enhance - Simplify - Unite

11440 West Bernardo Court « Suite 300
San Diego, CA 92127, USA

Phone: +1 (858) 753-1715
Website: px5rtos.com

© PX5 « All Rights Reserved

	PX5 RTOS - IAR - porting guide for STM32 Evaluation Kits - Overview
	Porting Steps
	Step 1: Get a basic IAR working sample from STMicro GitHub page
	Step 2: Add PX5 RTOS source code
	Step 3: Modify startup file
	Step 4: Modify linker file
	Step 5: Modify main.c file
	Step 6: Modify the ISR file
	Step 7: Add header files to your IAR project

